Source code for reference_registration

#!/usr/bin/env python
import argparse

from pysmFISH import utils
from pysmFISH.stitching_package import hybregistration as hr

[docs]def reference_registration(): """ This script is used to register the stitched reference channels for the processed hybridization. The comparison is sequential (from Hyb1-->HybN) and not all the hybridization steps are required. The output are pickle files with the recalculated corners according to the registration The input parameters are entered via argparse Parameters: ----------- path: string. Exact path to the folder with the stitched .sf.hdf5 reference_gene: string. Reference gene used for stitching fraction: float. Fraction of the image to use for the registration. Selection start from the center of the image. Default 0.2 """ # Inputs of the function parser = argparse.ArgumentParser(description='Register the stitched images \ of the reference channels') parser.add_argument('-path', help='path to the folder with the stitched \ XX.sf.hdf5 and XX_data_reg.pkl files') parser.add_argument('-reference_gene', help='Reference gene used for the \ stitching') parser.add_argument('-fraction',default=0.2, help='fraction of the picture to use for \ registration',type=float) args = parser.parse_args() # retrieve the parameters processing_directory = args.path reference_gene = args.reference_gene fraction = args.fraction # Determine the operating system running the code os_windows, add_slash = utils.determine_os() # Check training slash in the processing directory processing_directory=utils.check_trailing_slash(processing_directory,os_windows) hr.register_final_images_reg_data_only(processing_directory, gene=reference_gene, sub_pic_frac=fraction, use_MPI=False, apply_to_corners=True, apply_warping = False, region=None, compare_in_seq=False)
if __name__ == "__main__": reference_registration()