Global Optimization¶
-
class
pysmFISH.stitching_package.GlobalOptimization.
GlobalOptimization
[source]¶ Use linear regression to find the global transitions that fit the pairwise transitions best
self.logger – logger instance self.global_trans – 2D numpy array containg the global
translation for each tile. (Or empty list before running performOptimization())-
performOptimization
(tile_set, contig_tuples, P, covs, nr_tiles, nr_dim)[source]¶ Use linear regression to find the global transition
Fills up self.global_trans; a numpy array with shape (nr_tiles, nr_dim).
- tile_set: np.array
- Array filled with ones that has the same shape as tile set
- contig_tuples: list
- List of tuples denoting which tiles are contingent to each other.
- P: np.array
- 1D numpy array containing pairwise alignment y and x coordinates (and z-coordinates when applicable) for each neighbouring pair of tiles, array should be 2 * len(contig_typles) f for 2D data or 3 * len(contig_typles) for 3D data.
- covs: np.array
- Covariance for each pairwise alignment in P, array should be len(contig_typles).
- nr_tiles: int
- The number of tiles in the dataset
- nr_dim: int
- The number of dimensions the image.
-